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Abstract. The vibrational densities ofstates for the diffusion-limited aggregate withvarying 
elastic force constants are calculated by the recursion method of Haydock. Heine and Kelly, 
It is found that the spectrum with central forces is very different from that with isotropic 
forces which is characterized by a power-law behaviour in the fracton frequency regime. An 
interesting crossover is also observed when the ratio of the central to the non-central force 
constants of the Born model varies from e/p = 1 to e/p = x. 

1. Introduction 

Fractal structures are abundant in nature, and the development of fractal geometry 
(Mandelbrot 1982) led to remarkable advance in the description of many phenomena. 
Recently the elastic and vibrational properties of fractals have aroused much interest. 
In particular, much work has been carried out on the percolation system. For a period 
of time, the elasticity of random percolation network had been viewed as analogous to 
the problem of electrical conductivity of such a system. This analogy was first suggested 
by de Gennes (1976) in relation to the elasticity of gels and was later applied more 
generally (Hsu era1 1982). It can be understood within the framework of the Born model 
(Born and Huang 1954) with isotropic forces. In this model, the potential energy of the 
lattice is given by 

where U is the displacement, P,, is the unit vector from site i to site j ;  gii = 1 if sites i 
and j are both occupied and g,, = 0 otherwise; the summation runs over all nearest 
neighbours. ForthepurelyisotropicBornmode1,i.e. CY = Bin(l), thedifferent Cartesian 
components of the displacements decouple: 

It is obvious that each component maps exactly onto the scalar electrical conduction 
problem on such a network if one takes the displacement components to denote the 
voltage and p for the conductance of an occupied bond. Thus the isotropic Born model 
reduces to a scalar problem, On the basis of this scalar model, two results were obtained. 
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(i) Young’s modulus for the percolation system falls to zero a s p  approaches pc as 
Y - ( p  - p$, where f is the percolating conductivity exponent, as noted by de Gennes 
( 1976). 

(ii) The concept of the fracton (Alexander and Orbach 1982, Rammal and Toulouse 
1983) was introduced as the vibrational excitation of fractal structures. The vibrational 
density of states in the fracton frequency regime follows a power law N(w) - w d ~ - ~  
where ds is the fracton dimensionality. 

The above-presented results are elegant, but they fail to take into account the vector 
nature of the most realistic elastic systems. Recent developments (Feng and Sen 1984, 
Kantor and Webman 1984, Bergman 1985.Lemieuxera11985, Deptuekeral1985) have 
shown that percolation networks with central forces can have very different critical 
exponents for elastic moduli from those of the scalar model, i.e. Y -  ( p  - p,)fwheref 
is different from the percolating conductivity exponent f. Thus it  is important to inves- 
tigate the vibrational density of states of fractal structures when the vector nature of the 
elastic forces is included. This paper presents the calculations of the vibrational spectra 
of a specific fractal: the diffusion-limited aggregate (DLA). I n  the solid state, fractals are 
commonly produced by aggregation processes. The DLA, first proposed by Witten and 
Sander (1981).providesasimple but non-trivial fractalmodelfor avarietyofaggregation 
and growth phenomena (Meakin 1988, Feder 1988). In section 2. we outline the method 
used in our work and the approximation involved. The calculations are presented and 
discussed in section 3. 

2. Calculation method 

We adopt the widely used recursion method of Haydock et a1 (1972,1975) which offers 
fast computational speed and, above all, reliability. The vibrational density of states 
(VDOS) can be expressed as (Peng and Tian 1989) 

N ( w )  = - (2w/n)  Im[Tr(w\ - W).’] = - (2w/n)  Im(Tr G) (3) 
where G = ( w i  - W).’ is the Green function, W is the dynamical matrix, w, = w + ip 
(p + 0). The trace of G can be written explicitly, and the VDOS then turns into a sum of 
local densities of states 

where 1u;) is the displacement vector of site i. Unlike crystal and amorphous material, 
fractal structures have no characteristic length, i.e. the fractal is not uniform on any 
lengthscale,andsoit isinconvenient tocalculate theglobal v~os f rom the superposition 
of local VDOSS. Instead, wechoose an initial vector whose elementsare random variables 
chosen from a distribution: 

IO) = Ei  lu;) (5) 

where 5, is the random variable. For a specific configuration { E , } ,  one has 

(OlGlO) = E%u,lGluJ + E,E,(~,lGlu,). (6) 
‘*I 

Averagng over the configurations yields 
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I I I . :  Figure 1. The VDossforthe DLAWith the following 
constants:(a)e = ,9 = l;(b)cr = 1,p = O;(c )w = 
5,b = I ; ( d ) e  =ZQ,p= l ; ( e )e=  l00,p = 1. 
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We take the &-values as the uncorrelated random variables with mean zero and covari- 
ance 1, i.e. 

- 
(8 )  

(9) 

g.5.  = 6.. 

~ ( w )  = - ( ~ w / n )  Im m. 
1 I 1' 

So it is obvious that 

In the calculation, random variables are chosen from a Gaussian distribution, and ten 
initial vector configurations have been averaged to get the global VDOS. The diagonal 
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element of the Green function (OIGIO) is obtained through the use of the recursion 
method which defines a new basis of orthonormal vectors in) according to the recursive 
relation 
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b , , , ~ n + l ) = ( W - a , ) ~ n ) - b . * I n - l }  (10) 
withinitialconditionsIO} = 10),\-l]=0,6-l =O,bo= 1. AsWisatri-diagonalmatrix 
in the new basis, it is easy to invert wz - W analytically to obtain the continued-fraction 
expansion of (OlGlO): 

{OlGlO) = 1/[w2 - an - ( b , ( 2 / ( o z  - a ,  - \ 6 z \ 2 / .  . .)] (11) 
where (an, b.) are evaluated from the orthonormality property of the new basis. 

3. Results and discussion 

Our resultsareobtainedin twosteps. The first isthegenerationofthefractal; thesecond 
is the recursive calculation of the VDOS. The generation is after the algorithm of Witten 
and Sander (1951). One places a seed particle on a square lattice at time f = 1. At f = 2 
a second particle is released from a random point on a circle surrounding and far away 
from the seed particle and allowed to undergo a random walk until it sticks irreversibly 
to the seed. At I = 3. a third particle is released, and this process continues until a large 
numberofparticles have beenformed. Thecluster sizeusedin this workis2314particles. 
Using the density-density correlation function, we find the fractal dimension D = 
1.67 k 0.02. 

To calculate the dynamical matrix, we employ the Born model. For the isotropic 
case n = p ,  the VDOS at low frequencies follows a power law N(w) - wda-’ down to the 
lowest frequency w,,, determined by the finite size of the cluster. The power-law 
behaviour coincides with the fracton model (Alexander and Orbach 1982). Figure l(a) 
illustrates the VDOS with free boundary condition when LY = p = 1. Since the system is 
notfractalonalengthscaleshorter than the wavelengthA - 1, thev~osdoesnotexhibit 
power-law behaviour above M? - h. Fitting a least-squares line over the range from 
loglow= - l . l to loglow= 0.31,weobtainthefractondimensionalitydS= 1.20 2 0.06. 
This result is consistent with the diffusion studies of Meakin and Stanley (1983). Below 
wmi, the VDOS fits another power law N(w) - wdl-’  with d ,  = 2.09, which is the result 
of the finite-sue effects. 

When the vector nature of the vibration is considered, i.e. (Y # p ,  the VDOS may be 
expected to deviate from the prediction of the fracton model. In the case where 01 = 1 
and /3 = 0 in (l), the nearest-neighbour forces are central and the bond behaves as an 
ordinary spring. This purely central-force Born model is rotationally invariant. Figure 
Ub) shows the spectrum in the frequency range above wmln when LY = 1 and p = 0. 
We see that the VDOS deviates from power-law behaviour drastically. An interesting 
crossover is observed when both central and isotropic forces are included. Figures l(c)- 
l(e) show the spectra with the following n- and p-values, respectively: n = 5, p = 1; 

Feng (1985) has proposed a scaling argument on the low-frequency vibrational 
density of states for a percolation system with rotationally invariant elastic forces. He 
found that there exists a new crossover length scale I ,  which depends on the relative 
strength of the microscopic bond-stretching and bond-bending elastic force constants 
such that. when the connectivity Iength E is much larger than IC, the VDOS exhibits two 
different power-law behaviours in two different frequency ranges, with a crossover 

a. = 20,p = 1; (Y = 100,p = 1. 
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between them. His results were based on the percolation model of bond-bending type. 
Although the Born model is not incorporated in the Feng model, the deviation of the 
VDOS from the power-law behaviour is observed by both Feng's scaling argument and 
our numerical calculation. This deviation is caused by the vector nature of the elastic 
forces. It is noted that the model discussed by Alexander (1984) corresponds to systems 
under internal stresses that are not explicitly rotationally invariant, whose elastic and 
vibrational properties fall into the same universality as the scalar model. Our model 
corresponds to systems which are not subjected to any significant internal stress. 

4. Summary 

We have calculated the VDOS for a specific fractal, the DLA. with central forces between 
the nearest neighbours and found the spectrum deviates drastically from that with 
isotropicforceswhich is characterized by a power-law behaviour in the fracton frequency 
regime. An interesting crossover is observed when both the central and the isotropic 
forces are included simultaneously. 
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